

Grade 11S – Physics

Unit Two: Mechanics

Chapter 9: System of Particles

ACADEMY

Prepared & Presented by: Mr. Mohamad Seif

Think then Solve

Two particles A and B of respective masses $m_1 = 1.5kg$ & $m_2 = 0.5kg$ are submitted to the action of external forces, thus they move in XOY plane.

- The particle A is affected by a force $\vec{F}_1 = 3\vec{\imath}$ and the particle B is affected by a force $\vec{F}_2 = -\vec{\imath} + 2\vec{\jmath}$.
- The particles A and B are initially at rest at $A_0(2,3)$ and $B_0(4,1)$.
- 1)Determine the position of the center of mass G_0 of the system (A, B) at t=0s.
- 2) Calculate the acceleration of the particles A & B.

- 3) Determine at any time t, the velocity and position vectors of A and B.
- 4) Determine the position of the center of mass G of the system (A, B) at any time t. Deduce the value of its acceleration.
- 5) Verify that $m_1 \vec{V}_A + m_2 \vec{V}_B = (m_1 + m_2) \vec{V}_G$

Be Smart ACADEMY

$$m_1 = 1.5kg, m_2 = 0.5kg, \vec{F}_1 = 3\vec{i}, \vec{F}_2 = -\vec{i} + 2\vec{j}, A_0(2,3) \& B_0(4,1)$$

1)Determine the position of the center of mass G_0 of the system (A, B) at t=0s.

$$x_{COM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$x_{COM} = \frac{1.5 \times 2 + 0.5 \times 4}{1.5 + 0.5}$$

$$x_{COM} = 2.5m$$

$$y_{COM} = \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}$$

$$y_{com} = \frac{1.5 \times 3 + 0.5 \times 1}{1.5 + 0.5}$$

$$y_{COM} = 2.5m$$

$$m_1 = 1.5kg, m_2 = 0.5kg, \vec{F}_1 = 3\vec{\imath}, \vec{F}_2 = -\vec{\imath} + 2\vec{\jmath}, A_0(2,3) \& B_0(4,1)$$

2) Calculate the acceleration of the particles A & B.

$$\vec{a}_A = \frac{\vec{F}_1}{m_1}$$

$$\overrightarrow{a}_A = \frac{3i}{1.5}$$

$$\vec{a}_A = 2\vec{\iota}$$

$$\overrightarrow{a}_B = \frac{F_2}{m_2}$$

$$Se Smad t = \frac{-\vec{\iota} + 2\vec{j}}{0.5}$$

$$CADFINE TO THE STANDARD STAN$$

$$\vec{a}_B = -2\vec{\iota} + 4\vec{J}$$

$$m_1 = 1.5kg, m_2 = 0.5kg, \vec{F}_1 = 3\vec{i}, \vec{F}_2 = -\vec{i} + 2\vec{j}, A_0(2,3) \& B_0(4,1)$$

3) Determine at any time t, the velocity and position vectors of A and B.

$$\vec{V}_A = \vec{a}_A t + \vec{v}_{0A} \implies \vec{V}_A = (2\vec{i})t + 0 \implies \vec{V}_A = 2t\vec{i}$$

$$\vec{r}_A = \frac{1}{2}\vec{a}_A t^2 + \vec{v}_{0A}t + \vec{r}_0$$

$$\vec{r}_A = \frac{1}{2}(2\vec{i})t^2 + (0)t + 2\vec{i} + 3\vec{j}$$

$$\vec{r}_A = (t^2 + 2)\vec{\iota} + 3\vec{j}$$

$$m_1 = 1.5kg, m_2 = 0.5kg, \vec{F}_1 = 3\vec{i}, \vec{F}_2 = -\vec{i} + 2\vec{j}, A_0(2,3) \& B_0(4,1)$$

3) Determine at any time t, the velocity and position vectors of A and B.

$$\vec{V}_B = \vec{a}_B t + \vec{v}_{0B} \implies \vec{V}_B = (-2\vec{i} + 4\vec{j})t + 0 \implies \vec{V}_B = -2t\vec{i} + 4t\vec{j}$$

$$\vec{r}_B = \frac{1}{2}\vec{a}_A t^2 + \vec{v}_{0B} t + \vec{r}_{0B} \implies \vec{r}_A = \frac{1}{2}(-2\vec{i} + 4\vec{j})t^2 + (0)t + 4\vec{i} + \vec{j}$$

$$\vec{r}_B = (-t^2 + 4)\vec{t} + (2t^2 + 1)\vec{j}$$

$$x_G = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$x_G = \frac{1.5(t^2+2)+0.5(-t^2+4)}{1.5+0.5}$$

$$y_G = \frac{1.5(t^2+2)+0.5(-t^2+4)}{1.5+0.5}$$

$$x_G = 0.5t^2 + 2.5$$

4) Determine the position of the center of mass G of the system (A, B) at any time t. Deduce the value of its acceleration

$$\vec{r}_G = X_G \vec{i} + Y_G \vec{j}$$

$$\vec{r}_G = (0.5t^2 + 2.5)\vec{i} + (0.5t^2 + 2.5)\vec{j}$$

$$\vec{V}_G = (\vec{r}_G)' = t\vec{i} + t\vec{j}$$

$$\vec{a}_G = (\vec{V}_G)' = \vec{i} + \vec{j}$$

5) Verify that
$$m_1 \vec{V}_A + m_2 \vec{V}_B = (m_1 + m_2) \vec{V}_G$$

$$m_1 \vec{V}_A + m_2 \vec{V}_B = 1.5(2t\vec{\iota}) + 0.5(-2t\vec{\iota} + 4t\vec{\jmath})$$

$$m_1 \overrightarrow{V}_A + m_2 \overrightarrow{V}_B = 3t\overrightarrow{i} - t\overrightarrow{i} + 2t\overrightarrow{j}$$
 $\longrightarrow m_1 \overrightarrow{V}_A + m_2 \overrightarrow{V}_B = 2t\overrightarrow{i} + 2t\overrightarrow{j}$

$$(m_1 + m_2)\vec{V}_G = (1.5 + 0.5)(t\vec{i} + t\vec{j})$$

$$(m_1 + m_2)\vec{V}_G = 2t\vec{i} + 2t\vec{j}$$

$$m_1 \overrightarrow{V}_A + m_2 \overrightarrow{V}_B = (m_1 + m_2) \overrightarrow{V}_G$$

Think then Solve

Homogenous disc (D)

Be Smart ACADEMY

The adjacent figure shows a homogenous disc (D) of

radius R and mass M.

A circular portion is removed out as shown with the dotted line.

1)Determine the masses of the removed part and the remaining part in terms of M

2) Locate, using the given coordinates system, the center of the mass of the remaining part.

Homogenous disc (D)

1)Determine the masses of the removed part and the

remaining part in terms of M

Since the disc is homogenous then:

$$\frac{m_{disc}}{A_{disc}} = \frac{m_{removed}}{A_{removed}} = \frac{m_{remains}}{A_{remains}}$$

Homogenous disc (D)

$$\frac{M}{\pi R^2} = \frac{m_{removed}}{\left[\frac{\pi R^2}{4}\right]}$$

$$m_{removed} = \frac{M \times \left[\frac{\pi R^2}{4}\right]}{\pi R^2}$$

$$m_{removed} = \frac{M}{4}$$

Homogenous disc (D)

$$\frac{M}{\pi R^2} = \frac{m_{remains}}{\left[\pi R^2 - \frac{\pi R^2}{4}\right]}$$

$$m_{remains} = \frac{3M}{4}$$

$$m_{remains} = \frac{M \times \left[\pi R^2 - \frac{\pi R^2}{4}\right]}{\pi R^2}$$

$$m_{remain} = M - m_{removed}$$

$$m_{remains} = rac{M imes \left[rac{3\pi R^2}{4}
ight]}{\pi R^2}$$

$$m_{remain} = M - \frac{M}{4}$$

$$m_{remain} = \frac{3M}{4}$$

Homogenous disc (D)

2) Locate, using the given coordinates system, the center of the mass of the remaining part.

The whole disc can be considered as a system made up of two parts:

The removed part of mass $m_{removed} = \frac{M}{4}$ and center $I(\frac{R}{2}, 0)$.

The remaining part of mass $m_{remain} = \frac{3M}{4}$ and center A(x, y).

Homogenous disc (D)

$$_{x}$$
 $_{-}$ $m_{removed} \times x_{removed} + m_{remain} \times x_{remain}$

 $m_{removed} + m_{remain}$

$$x_0 = \frac{\frac{M}{4} \left[\frac{R}{2} \right] + \frac{3M}{4} \cdot x}{M}$$

$$0 = \frac{\frac{M \cdot R}{4} \cdot x}{0}$$

Homogenous disc (D)

$$\underline{} m_{removed} \times y_{removed} + m_{remain} \times y_{remain}$$

$$m_{removed} + m_{remain}$$

$$0 = \frac{\frac{M}{4}(0) + \frac{3M}{4} \cdot y}{M}$$

$$0 = \frac{0 + \frac{3M}{4} \cdot y Se Smart}{M \setminus ACADEMY}$$

$$y = 0$$

Then the center of the remaining part is located at $A(-\frac{R}{6}, 0)$

Think then Solve

Two solids (S_1) and (S_2) taken as particles of respective masses $m_1 = 2kg$ and $m_2 = 4kg$, are placed in the space frame of reference $(O, \vec{\imath}, \vec{\jmath})$ as shown in the adjacent figure

Part A: (S_1) and (S_2) are at rest:

- 1) Determine X_G and Y_G the coordinate of the center of mass $[(S_1);(S_2)]$.
- 2) Deduce the position vector of the center of mass of the system $[(S_1);(S_2)]$.

Be Smart ACADEMY

Part A: (S_1) and (S_2) are at rest:

1) Determine X_G and Y_G the coordinate of the center of mass $[(S_1);(S_2)]$.

$$X_{G} = \frac{m_{1}x_{1} + m_{2}x_{2}}{m_{1} + m_{2}}$$

$$X_{G} = \frac{2(0) + 4(6)}{2 + 4}$$

$$Y_{G} = \frac{m_{1}y_{1} + m_{2}y_{2}}{m_{1} + m_{2}}$$

$$X_{G} = 4m$$

$$\vec{J}$$

$$Y_G = \frac{2(4) + 4(0)}{2 + 4}$$

$$Y_G = \frac{8}{6}m$$

2) Deduce the position vector of the center of mass of the

system $[(S_1);(S_2)]$.

$$\vec{r}_G = X_G \vec{i} + Y_G \vec{j}$$

$$\vec{r}_G = 4\vec{i} + \frac{8}{6}\vec{j}BeSmarto$$
ACADEMY

Be Smart ACADEMY

Part B: Motion of the center of mass:

- At instant $t_0 = 0s$ (S_1) is submitted to the force $\vec{F}_1 = a \cdot \vec{\iota}$ where a is constant while (S_2) is submitted to the external force $\vec{F}_2 = 8 \cdot \vec{\jmath}$.
- 1) Calculate the acceleration vector \vec{a}_1 (in terms of a) and \vec{a}_2 of (S_1) and (S_2) respectively at any time t.
- 2) Deduce \vec{r}_1 (in terms of a) and \vec{r}_2 the position vectors of (S_1) and (S_2) respectively at any time t.
- 3) Show that a=6N knowing that (S_1) meets (S_2) at the instant t=2sec.
- 4) Determine the position of the center of mass of the system $[(S_1);(S_2)]$ and deduce its acceleration.
- 5) Verify the theorem of center of mass $M\vec{a}_G = m_1\vec{a}_1 + m_2\vec{a}_2$, where $M = m_1 + m_2$

At
$$t_0 = 0s$$
; $\vec{F}_1 = a \cdot \vec{\iota} \& \vec{F}_2 = 8 \cdot \vec{\jmath}$.

1) Calculate the acceleration vector \vec{a}_1 (in terms of a) and \vec{a}_2 of (S_1) and (S_2) respectively at any time t.

$$\vec{F}_1 = m_1 \vec{a}_1$$

$$a.\vec{i}=2\vec{a}_1$$

$$\vec{a}_1 = \frac{a.1}{2}$$

$$\vec{F}_2 = m_2 \vec{a}_2$$

$$\mathbf{8}.\vec{\mathbf{j}}=\mathbf{4}\vec{a}_2$$

$$\vec{a}_2 = \frac{8.J}{4}$$

$$\vec{a}_2 = 2.\vec{j}$$

2) Deduce \vec{r}_1 (in terms of a) and \vec{r}_2 the position vectors of (S_1)

and (S_2) respectively at any time t.

$$\vec{r}_{1} = \frac{1}{2}\vec{a}_{1}t^{2} + \vec{v}_{0}t + \vec{r}_{0} \qquad \qquad \vec{r}_{1} = \frac{1}{2}(\frac{a}{2} \cdot \vec{t})t^{2} + (0)t + 4\vec{j}$$

$$\vec{r}_{1} = \frac{a}{4}t^{2}\vec{i} + 4\vec{j}$$

$$\vec{r}_{2} = \frac{1}{2}\vec{a}_{2}t^{2} + \vec{v}_{0}t + \vec{r}_{0}$$

$$\vec{r}_{2} = \frac{1}{2}(2 \cdot \vec{j})t^{2} + (0)t + 6\vec{i}$$

$$\vec{r}_{2} = 6\vec{i} + t^{2}\vec{j}$$

- 3) Show that a=6N knowing that (S_1) meets (S_2) at the instant t=2sec.
- (S_1) meets (S_2) at t=2sec then $\vec{r}_1 = \vec{r}_2$

$$\frac{a}{4}t^2\vec{i} + 4\vec{j} = 6\vec{i} + t^2\vec{j} \qquad \qquad \frac{at^2}{4} = 6 \qquad \Rightarrow \qquad at^2 = 24$$

$$at^2=24$$

For t=2s:
$$\Rightarrow a(2)^2 = 24 \Rightarrow 4a = 24 \Rightarrow a = \frac{24}{4}$$

$$a=\frac{24}{4}$$

$$\vec{r}_1 = \frac{a}{4}t^2\vec{\imath} + 4\vec{\jmath}$$

$$\vec{r}_{1} = \frac{a}{4}t^{2}\vec{i} + 4\vec{j}$$

$$\Rightarrow \vec{r}_{1} = \frac{6}{4}t^{2}\vec{i} + 4\vec{j}$$

$$\Rightarrow \vec{r}_{1} = 1.5t^{2}\vec{i} + 4\vec{j}$$

$$\vec{r}_1 = 1.5t^2\vec{\imath} + 4\vec{\jmath}$$

4) Determine the position of the center of mass of the system $[(S_1);(S_2)]$ and deduce its acceleration.

$$\vec{r}_G = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \qquad \vec{r}_G = \frac{2(1.5t^2 \vec{\iota} + 4\vec{J}) + 4(6\vec{\iota} + t^2 \vec{J})}{2 + 4}$$

$$\vec{r}_G = \frac{3t^2\vec{\iota} + 8\vec{\jmath} + 24\vec{\iota} + 4t^2\vec{\jmath}}{2+4}$$

$$\vec{r}_G = \frac{(3t^2 + 24)\vec{\iota} + (4t^2 + 8)\vec{\jmath}}{6}$$

$$\vec{r}_G = (\frac{1}{2}t^2 + 4)\vec{i} + (\frac{2}{3}t^2 + \frac{4}{3})\vec{j}$$

$$\vec{r}_G = (\frac{1}{2}t^2 + 4)\vec{i} + (\frac{2}{3}t^2 + \frac{4}{3})\vec{j}$$

The velocity vector of the CM is the derivative of the position vector of CM

$$\vec{V}_G = \vec{r}'_G = t.\vec{\iota} + \frac{4}{3}t.\vec{J}$$

The acceleration vector of the CM is the derivative of the position vector of CM

$$\vec{a}_G = \vec{V}_G' = \vec{\iota} + \frac{4}{3}\vec{J}$$

5) Verify the theorem of center of mass $M\vec{a}_G = m_1\vec{a}_1 + m_2\vec{a}_2$,

where $M = m_1 + m_2$

$$m_1\vec{a}_1 + m_2\vec{a}_2 = 2(3\vec{i}) + 4(2\vec{j})$$
 $m_1\vec{a}_1 + m_2\vec{a}_2 = 6\vec{i} + 8\vec{j}$

$$m_1\vec{a}_1+m_2\vec{a}_2=6\vec{\iota}+8\vec{\jmath}$$

$$M\vec{a}_{G} = (2+4)\left[\vec{i} + \frac{4}{3}\vec{j}\right]$$

$$M\vec{a}_{G} = 6\vec{i} + 8\vec{j}$$

The theorem of center of mass $M\vec{a}_G = m_1\vec{a}_1 + m_2\vec{a}_2$ is verified

